CAPITOL AREA TIMEX/SINCLAIR USERS GROUP :Formerly

Prince George's
Timex/Sinclair User's Group

April 1985
Vol. 3, No. 1

PRESIDENT'S COLUMN
Writing For the 'Letter
Once again, articles are coning in from a variety of sourses. Not all of them made it into this issue, but I'm standing behind my policy of printing everything that's submitted by members. If you don't see it in this issue, look for it next menth. Another newsletter said; 'If you don't see your article, you probably didn't write one!' Once again, anything you've got is tine - especially Reviews, or short to medium length prograns.

Future Business

The CATS library is here! We have a tape of public domain 2968 programs that wi! 1 be available at the next meeting. The prograns run from simple graphics demos to Ned Beeler's mailing list program. If you want a copy, bring your recorder, patch cord, and a c60 or 98 tape to the next meeting, and some cooperative menber will oversee the use of the tape to tape duplicating equipment. Right now, we can make three dups at once, but that probably can be expanded.

If you have programs to donate, bring then to the next meeting also, and we'll campile then for the one after that. Putlic Domain means homebrew prograns, and those that have been typed in from magazines.

The "Executive" Comittes

I've been hosting a meeting of interested club menbers, every Monday evening at 7:30, He generally end up with a mix of club business and individual problens or triunphs.

Last week, Tom Bent cane and denonstrated his nethod of nodifying the 1888 for faster LOADing. His method is smeuhat original - he uses nippers to lop off the upper half of the filter cap (C11) on the mic output. He also had a nunber of other ways to prune your 2868 for better performance; for stronger SANEs on the 2868, clip C 18; for more sensitivity on LOAD, change R 12 from 6.8 K to 1.8 K .

This week, Murray Barasch brought a progran he was trying to debug, and we got it going, as well as polishing up the newsletter for the printer.

Everyone is invited to these meetings - if you've got time, come on doun!

Errata

The IRSCALC progran last month was a great way to get that ol' 1848 done, except that severa! of the formulas 1 listed were wrong. The correct ones are:

$$
\begin{aligned}
& \text { F6 } \quad \mathrm{B} 07+\mathrm{C} 07+\mathrm{D} 07+\mathrm{E} 07 \\
& \text { F9 } \\
& \text { F1: } 107+\mathrm{J} 07+\mathrm{K} 07+\mathrm{L} 07+\mathrm{M} 07 \\
& \text { F20 } \\
& \mathrm{H} 11+111
\end{aligned}
$$

Last Mesting.... and Next.
The March meeting went very we11. Tom Bent showed an adapter to use joysticks with Spectrum prograns, and Mike Cohen demo'd his baby Macintosh. Next month... is up in the air, as usual. I'm hoping to get a QL, but no pronises. If you've got something to show, to the whole group or just a portion, let ne know and we'll make roon. We may hold an advanced seminar on the Timex harduare on the day following - details to be announced. See you there!

SPECIAL INTEREST ACTIVITIES

At the last meeting, seven to eight people indicated interest in each of two activities: MACHINE CODE (or assembly language) and BUSINESS and INVESTMENT applications. John Conger will again lead the applications group and is devising a topics schedule. Fisher, Conger, Bent and others are devising a curriculum and selecting text materials for the machine language course.

All those who signed up will be contacted before the programs jell to assure suitable direction and level to meet member's interests. Others interested may sign up at the April meeting and we expect to get going on a regular basis in mid April. Anyone with suggestions for either group can call Conger or Fisher in the evenings. Conger: 654 5751; Fisher: 5897407

SUBMISSIONS for this newsletter are eagerly solicited. First priority will be given to member's submissions. Publication of material does not transfer rights from the author, in fact, it may establish priority.

Submissions may be reviews, articles on applications, programming techniques, hardware, or anything else you can imagine. Pertinent articles from other publications will also be considered.
Bring material to the meeting, or send it to PO box 725, Bladensburg, MD 20710. I would prefer material to be typed, single spaced, in $3 \%_{2}$ " columns - but don't break your back: the Xerox dosen't really care. Printouts from the 2040 printer are fine, but, use Radio Shack paper, and don't put scotch tape over the printing.

Permission is hereby granted for reprints of articles in nonprofit user group newsletters. Please give credit to CATS and the author.

IMPORTANT DATES:

Newsletter d/l		Meeting
April 13 19		May 11
May 17		June 8
June 17		July 13

See you there!

AD RATES CATS NEWSLETTER

	$1 X$	$3 X$	$6 X$	12 X
FUll Page	$\$ 100$	294	570	1080
HALL PAGE	55	161	313	594
Quarter Page	30	88	171	324
Business Card	15	43	81	155

($7^{\prime \prime}$ WIDE BY $10^{\prime \prime}$ LONG MAXIMUM SIZE. CAMERA READY MATERIAL IN BLACK AND WHITE.)

WE WILL MAIL YOUR ENCLOSURE. READY TO MAIL WITH NEWSLETTER. WE WILL CHARGE ACCORDING TO SIZE OF ENCLOSURE. ASK US FOR QUOTE AND NUMBER NEEDED. ($8.5^{\prime \prime} \times 11^{\prime \prime}$ SIZE- $\$ 25$ PER ISSUE.)

CATS ROSTER OF OFFICERS

President Mark Fisher
Vice President Mike Cohen
and Vice Pres. Wayson Lee
Secretary
Bob Curnutt
Treasurer
Sarah Fisher

Newsletter Team
Production Editor:
Sarah Fisher
Manuscript Editor
Mark Fisher
Post Office liason:
Jules Gesang
Writers:
Anne Andersen
Anon.
RESOURCES
Just one publication this month, a tried and true journal, and still going strong.
Q.ZX (HAM radio \& Sinclair computer)

Alex Burr
2025 O'Donnell Dr.

By Levering, Katz \& Moskowitz

In its start-up years, the automobile industry had hundreds of back yard tinkerers bolting metal together to build a motorized vehicle that would make their fortunes. We know of Henry Ford and Walter Chrysler, but who remembers the contributions (let alone the names) of the many others? This book makes the laudable attempt to profile the Personal Compuer industry at its start, before the shake out that is expected to reduce the hundreds now active to the dozen likely to survive.

Sixty fiue entrepreneurs are sketched in brief biagraphies and some data that tell us where they came from and how they failed or made millions - or both. Not just computer designers and software wizards are covered. The contents give almost equal space to peripheral providers like Hayes modems and Tandon disk drives; Shopkeepers like Millard, the first compter billionaire and owner of ComputerLand; information moguls like Brunnell of PC World and Wilkins of CompuServe; moneybags and gurus like Rock, McKenna and venture capitalist Perkins. One Japanese is covered although a separ ate book would be required for the hundreds active there.

As a reference source of "who done it", it is useful for those of us who like to follow industry developments. However, it is marred by two flaws, the main one being who is left out and the second being the lack of dates when many signifiant events occurred.

Those who have read fire in the Valley will have a more complete picture of the flow of history than can be presented by the 65 biographies in the subject book. The Computer Entrepreneurs does not include (or gives only passing mention to) Ed Roberts who really started it all with his Altair 8080 kits. And the information moguls section omits Les Solomon, technical editor of Popular Electronics (now Computers and Electronics). These two men gave the personal computer its start. Another missing name is Robert Noyce of Intel who produced the 8086 chip and some computers using it, before the Altair. The compters were for his stable of programmers, like Gary kildall, to use in their work. The names of these men are not highlighted as I feel they should be. And of course Sinclair is not mentioned at all.

Still, the stories that are told are facinating: Tramiel, a Polish survivor of Auschwitz who built a typewriter repair shop into Commdore; Mitch Kapor the transcendental meditation teacher who saw his Lotus 123 program humble Visicalc; Phillip Hwang the Korean immigrant dishwsher now worth half a billion; and of course the career highlihts of well known personalities such as Steve Jobs, George Morrow, Andrew Kay, Adam Osborne; Bill Gates and George Tate.

This book turns out to be more of a "peop?e" book than the industry profile it set out to be. As such it has much interesting human interest content, although it also has many holes in it due to the chosen format.

All in all, if you have read Fire in the Valley then you have read much of the material covered here, and "Fire" is the more complete and competent history of the industry as well as providing more depth and color to the characters involved.

MORE SPECTRUM FEEDBACK \# \# 1

Listed belon are a number of spectrum Frograms which I hawe rum on the 2068 with 3 Emulatom Thes should mun on a 2068 with Fomsuitch, but I make no promises!.
Match das. Soccer simulation with superb graphics
SFectrum cricket.
Froade sampler, Three simple aroade games.
War of the Worlds.
Sabre Wulf. -Woted best game of 1984 in U.K.
The fall of Rome -Defend the Boman Emfire for 50 years.
Football manaser. Coach a soccer team.
King Frothers quest. -'iet another adwenture game.
Battlecars.
HFOCglyFEE.
Select $1 .-12$ games for 12 founds Cumanback, Spectres. Tame
Gate, SFace Inwaders.Mr Wimpy, Moon Eugey, Denis, Mis三ile
Defenser Fool. Tranuerse. Neteor Stomm
Deus Ex Machina - Lomes with matching music tape.
Alchemist.
Mini office. This tape includes a word processor"spreadsheet, database, and graphiesflotter. The word frocessor will not run using an Emulator.

I've seen a great deal of nonsense in print about the Emulator with claims that it will min only 60% of spectrum software. This is just not trues mu estimate is at least 95%.

I buy all my Spectrum software direct from Enaland. Most Eritish software suFpliers will send tafes direct to the U.S.F. for cost flus 1 or 2 pounds extra fostage. Just look in magazines surf as Z Eomputing and Sinclair User. All sou need to do is quote your credit card number. The cost adwantage is obwious. most Spectrum software costs 3 to 10 founds compared with $\$ 20$ and uF in the U.S.A.

Pegards
Tony Erooks
F"S. This letter was dome using Mscrift adafted to driwe the Tasman interface. The printer used was a Gorillas Banana.

MORE SPECTRUM FEEDBACK, \#2*

grams	Here is a iist of fing prothat Ruld on the T/S 20Es
and	The E Russell ROMSUITCH.
(01)	Eye of the Btar Harrior
(02)	Darts
(03)	Poker-Bandit
(04)	ZX Intay Eard
(05)	Zodiac
(06)	Datey Thomson's Decathaton
(07)	5 Print Etytes
(08)	MUGEY
(09)	uet Set Hilly
(10)	Cribbage
(11)	Typesetter
(12)	3 SPare Art
(13)	Stargazers Secret
(14)	3 Tape COMKBOOKS
(15)	Hd Astra
(15)	Speedytoad
(17)	Tu, Ecrabble
(18)	Micro Dtympics
(19)	Pinball mizard
(20)	zaxxan

DRIVING A MONITOR From the $T / S 1000$

The T/S 1000 was designed to produce useable results on a standard TV. Its display was limited to 32 character lines, partly to ensure that the letters were still legible. They are larger, but if you spend a lot of time in front of the set, the blurriness of the standard TV screen can be wearing. The fault lies in the circuits of the reciever. A standard TV is designed to create a pleasing image from of feet - while at 18 inches, the features are often blurred.

A monitor, on the other hand, has been designed to produce a crisp image up close. Unfortunately, the average monitor requires a different signal than a standard TV, and the 1000 does not offer a suitable output. Like many other things with this machine, this can be changed! The correct signal is present, but is too weak to drive a monitor. The mod involves making three solder connections within the machine, to add a one transistor amplifer for the signal.

The Mod...

Materials required are:

2N222 Transistor (Radio Shack sells these, but theirs are of variable quality. A Motorola version will have a higher gain and a crisper output than the average Radio Shack specimen.)
$33 \Omega, 1 / 4$ watt resistor
$100 \Omega, 1 / 4$ watt resistor
IN914 glass diode. Don't worry about the precise part number - all those little fellers are about the same.
A panel mount RCA Jack (ex. Radio Shack 274-346)
The circuit can be put almost anywhere. There is room to fit it inside the modulator without affecting its operation, thus leaving an uncluttered machine, \& the option of either TV or monitor output. It involves drilling holes very near to some resistors in the modulator, but I think that the results are worth it.

To install the circuit, first remove the ULA and 280 chips, and store them in aluminum foil (to protect against static electricity). Next, carefully drill the $1 / 4^{n}$ hole for the jack, and the $1 / 16$ hole for the signal line. Solder up the assembly outside the case, and install it, being careful not to leave any solder where it shouldn't be. Carve the case to fit the new jack, insert the chips, and enjoy!
continued from p. 4
(45) Eddie Kidd dup Challenge
(46) MAH JONG
(47) River Raid
(48) Black Crystal
(49) Address Manager
(50) TUBECUBE (3D Rubik's Cube)
(51) The HOBEIT
(52) Psytron
(53) Masterfile
(54) Electronic Designer
(55) Machine Code Tutor
(56) Skol Daze
(57) 007 spy Tape Copier
(58) Lem Tape Copier \quad a
(59) OMnicalc II
(60) Super Re-NuTher
(61) Supercode II
(62) Spectrographics
(63) Superchess 3.0
(64) Zombie Zombie (sequel to 30 Ant Attack

A few Spectrum programs
that would not RuN on the Rom-
SWITCH.
(1) 3D Dracman
(2) Legend of fyalon
(3) Doomdark's Revenge (Sequel to Lords of Midnight)
(4) Eights
(5) Uagan Attack

[^0]

by Lamont Downs

Here's a short program that you can merge with almost any game-type program and which enables you to change the paper color of the entire screen in a flash WITHOUT AFFECTING ANYTHING ELSE ON THE SCREEN. For example, if you've got a spaceship traveling across a black sky you can cause the entire sky to flash red for an instant and then back to black without erasing anything or changing any of the ink colors - and do it without having to remember any complicated USRs or even line numbers!

To use, first type in the program below and SAVE it. Then LOAD (or type in) the program you want to "decorate." Be sure the program does not have a line 1 or any lines from 9970 to 9989 (if it does, relocate them). Then MERGE the program below.

Now all you have to do to change paper color anywhere in the program is to insert the command GOSUB followed by the first three letters of the calor (GO SUB blu, GO SUB gre, etc.). For example, if you have a blue sky background, you can light up the sky with a red fiash with the following program Iine:

GO SUB red:PAUSE 2:GO SUB blu
You can create dandy explosions by using sequences of colors (red-green-yellow-green-red) etc.). Some moniters will "tear" if colors change too quickly, so you may need to experiment with the length of the pauses for best effect. And don't forget you can throw in sound effects using the SOUND command instead of the PAUSE.

One last warning: until line 1 is executed the machine code for changing color is not loaded into memory and the program will crash if you try to change colors, so if you're starting the program somewhere other than line 1 be sure that you take this into account.

"Splash"

```
    1 CLEAR E5279: G0 SUB 9970
9970 RESTORE
9972 FOR n=65280 TO 65304: READ
X: POKE n,x: NEXT n
9974 LET bla =9980: LET blu=9981:
    LET red=9982: LET mag=9983: LET
    gre=9984: LET cya=9985: LET yel
=9986: LET whi =9987
9976 RETURN
9978 DATA 1, 192,2,33,0,38,126,20
3,0,203,0,203,0,119,35,62,0,11,1
85,32,241,184,32,238,201
9080 POKE 652B8,159:
187. POKE 55.0.7,175: LENE 85290,
POKE 65292,175: LET rand=US
R. 55280: RETURN
OS1 POKE B52BS, 2こ3: POKE 55290,
```



```
R 55230: RETURN
```

	POKE 65290, LET rand =US POKE 65290, LET rand=Uड POKE 55290, LET rand=US POKE 65290, LET rand=US POKE 55290. LET rand=US POKE 65290, LET rand =U

9982 POKE 65288,159: POKE 65290, 231: POKE 65292,175: LET rand=US 9983 POKE 65283, 223: POKE 65290, 231: POKE 65292, 175: LET rand=US R 65280: RETURN 157. POKE 65288,159: POKE 65290, R 6S2B0: RETURN 9985 POKE 55230, 223: 167: POKE 65292, 239: R 65280 : RETURN 9986 POKE 55230, 159: POKE 55290. 231: POKE 65292, 239: 9987 POKE 65288, 223: POKE 65i290, 231: POKE 65292, 239: LET rand = Lis

When I was asked to write about the Tasword Two word processing program I'd just received from England, my first thought was that I lacked the proper background to evaluate the program's merits. I was the guy that spent a week learning to operate the company word processor but still writes out manuscripts. Give it to a typist. So I faced Tasword with a certain amount of trepidation. After using it a while, I have to give it a top grade in my book. In writing this article I received some unexpected help from Tom Ferrebee's article in Vol. 11 of TS Horizons. I hope Tom won't mind but I have reproduced his excellent outline of the system's features.

The system loads in just under 2 minutes and starts with a blinking cursor in the upper left corner of the screen, which is 64 characters wide. An "information" line at the bottom gives the line number and column position of the cursor, tells if right justification, word wrap, and the insert mode is $O N$ or Off, and, lastly, to push EDIT if help is meeded. For first time users there is an excellent tutorial that quickly teaches how to use the numerous functions of the program. The help screen contains a listing of the "normal" mode commands, all of which are accessed by holding down one of the shift keys and the applicable function key. The second, or "extended" mode, is accessed by pushing the symbol and caps shift keys simultaneously. These commands are mainly used for formatting and some miscellaneous functions. The execution of these commands is also different from the normal mode, since once you are in the extended mode, you only have to press a single key, but the system reverts to the normal mode after the key stroke.

Tasword differs from MSCRIPT in that it supports a ZX printer, as well as a full sized printer utilizing a Centronics parallel interface. When you are ready to print using a full sized printer, you access the Print screen by using the stop command. You then have the option of defining your graphics or using the Epson FXBO character codes which are imbedded in the program. This screen is also used to load or save text files.

TASWORD TWO SPECIFICATIONS

Screen size	64×22
Text file size	19,200
Frinters	Both
Interface	Centronics
Cursor by	Letter, word, Iine, or screen
Delete by	Letter, word, or Iine
Margins	Left or right
Block	Move or copy
Search	Find or replace
Wordwrap	Yes
Right justify	Yes
Centering	Yes
Line length	64
Spacing	$1,2,3+$
Tutorial	Yes

My only wish is that Tasword Two had a Tab capability. It is a little awkward to have to pound the space bar to get paragraph indentations. It is, however, an excellent WP program. Now that I've gotten used to it, it's fun to use. Goodby, paper and pen!

Inside the machine

For the average computer owner, canned programs or home-brew programs in BASIC will do the jobs we had in mind when we bought the computer. At one time or another, however, all of us will have a need to know something of the inner workings of our purchase. This may be the result of a need to do things that BASIC can't do-such as control I/O ports to an alarm system for example - or it may be a need to remove some of the sense of uncontrollable magic from the machine. While replaceing this feeling of mystery, we will gain an appreciation of at least four interlocking levels of complexity in the machine. Starting from the smallest, they are:

1. The actual hardware: wires and semiconductor switches.
2. The machine code that controls these switches.
3. The BASIC (or other high level language) that lets you easily invoke the machine code, and... 4. The real world problems that are addressed by your programs.

THE REAL WORLD

Now let's work backwards through those levels. The real world offers an infinite number of situations that need some sort of calculation. If you need assistance, you go to an expert, who asks you questions, then provides an answer. Some canned programs operate at this level - they ask you questions, you respond, and they provide you with the results.

HIGH LE VEL LANGUAGES

Over the last 10,000 years, we have developed symbolic tools to assist us. These include the alphabet and language, and the number system and algebra. The real world tools can be adapted to the computer. The result is a programming language. It uses (in the case of BASIC) English words to describe its functions, and algebraic notation to express the mathematical operations. [Neither the English, nor the algebraic notation conform to the original, "real world" standard. They have been modified to accomodate the remaining two levels of complexity.] At this level, numbers are represented as you would expect - " 10 " means ten, while some of the symbols are new - such 25 * for times. Generally, this is a self-sufficient level - you needn't look any farther when using or programming the machine. Some programs can be so complex as to approach a language themselves in flexibility and power - DBII, or even VU-CALC are examples.

MACHINE CODE

The third level, machine code, is the level that actually controls the central processor. In the Timex there is an extremely complex program of 8192 steps that is responsible for the operation of the computer, as well as the interpretation of any BASIC program that might be present. These are two very different jobs, and in other computers they are performed by two different programs.

The first job is that of an operating system. This portion coordinates the various elements of hardware, allowing for display, printouts, loading, and saving of data. The second portion is the BASIC interpreter and editor. This is the "brain" that you are fighting as you try to avoid the dreaded inverse " S ". This interpreter can be replaced: for example, the egregious BASIC that comes with the Commodore can be replaced with a much more efficient version (though it's still not as compact as Sinclair BASIC).

At this level, numbers are represented in whatever way is most convenient for the program. In its reports to the display file numbers are expressed as decimal numbers, but for its own use, there are four different methods of expression - each used when most appropriate. It is possible to write your own programs in machine code. It requires extensive knowledge of these deeper levels of the computer, but also offers enormous freedom and speed. You can make the computer execute machine code by using "USR nnn", where $n n n$ is the starting address of the code.

HARDWARE

Numbers as Voltage
In this deepest level all information is in the form of electrical potential. A +5 volt signal might represent a "one", while a ground level might represent a "zero". This might seem very limiting; it is. Single lines carry information around the computer, controlling the timing and operation of its "hidden" accessories. But there isn't any way to have an individual line for each possible number. Rather, there are two groups of lines, known as busses, that carry numbers. These busses are organized as sets of eight lines. The first bus is the data bus; it consists one set of eight. [The second bus is the address bus - we will get to it in a moment.] There are 256 different possible patterns of voltage in these eight lines, ranging from "00000000", "00000001", "00000010", "00000011" to "11111111". This group of eight is called a byte. To express a number larger than 255, you need a second byte. With two bytes, you have 256*256 possible numbers, or 65536. This is where the magic 64 K number comes from.

The "Real" Computer

Now that we have a way to express numbers electrically, we need to have some device that will perform operations with these numbers, such as addition. This is the job of the Central Processing Unit. Originally, this was a device the size of a refrigerator. In a micro, it's on a chip, called a microprocessor. It is able to take a series of numbers from the memory (the machine code) and use them as instructions, controlling the actions of the rest of the computer, as well as performing simple arithmetic and logical steps.

The CPU has a very few locations to hold numbers, ready to be used. These locations are called reqisters. Each register, and the controlling logic that goes with it, are composed of networks of transistors. In the 280 , data is handled in one byte urits. Other chips use two bytes (16 bits) or four bytes (32 bits) for data.

For each byte of machine code that must be executed, the CPU must perform a number of discrete steps. These steps are held as microcode, which is yet a deeper layer of operation. Since it is common to all 280 CPU chips and cannot be changed, we can ignore it.

Storage

A computer must store many more numbers than could possibly be held in registers, however. To store these numbers, the computer has additional chips. These form a series of banks of eight switches. Each bank can hold one number, between 0 and 255. Each bank has a unique address. (You can look at each bank from BASIC. Try the first bank, with address zero. "PRINT PEEK 0" should give 211. These banks are called up through the second bus, the address bus. Since our computer needs more than 256 spaces to store numbers, the address bus is two bytes wide, allowing 64 K different addresses. (Not all these addresses must be used.)

Methods of Storage

ROMs
There are three ways of physically building these banks. They can be jumpers, capacitors, or transistor networks. Banks of jumpers are called ROMs. Numbers are stored as a pattern of connections - intact lines will allow the voltage to build up to +5 V , while open circuits leave the line at 0 V . These patterns can only be created in in a factory - as far as you are concerned, they are Read Only Memory. This is ideal for a program that always must accompany the machine, and that is why the Timex comes with its operating system in ROM. These can never be erased.

EPROMs

Capacitors can be loaded with numbers at will, by applying the correct voltage. Once loaded, they will retain their values for at least ten years, uniess they've been erased. Memory chips with capacitors are called EPROMs (Eraseable, Programmable Read Only Memory). These chips are often used in small production devices, such as interface boards. These can only be erased with great difficulty, and then, all information on the chip will be lost.

RAMs

Both devices above are somewhat like engraving in granite. It would be nice to have something more like a blackboard that would retain the information until it was specifically erased. The answer is the RAM. This is composed of transistor networks that will stay in an "on" state until specifically turned "off". This is the device that holds your BASIC programs and other information that can be changed at will. Unfortunately, these chips must constantly have a supply of +5 V to keep the transistors happy. A very short interruption causes all the banks to return to zero.

This completes our tour of the levels of the Computer. Each level is adapted to dealing with both the level above, and the level below. In your relations with the computer, you can decide what level is most appropriate, from the most general canned program, to the most detailed hardware level." Fortunately, the computer is an amazingly forgiving device. Except for the hardware level, you can't hurt the machine with an incorrect command. Your program may crash, but the computer will patiently wait for you to try again.

Mark Fisher

SUEroutine for iemu sclection lirs. Anne by $\begin{aligned} \text { b } \\ \text {. Andersen }\end{aligned}$

This subroutine was written for the T/S 1000 in the BASIC language. It will also work on the T / S 1500, and probably on many other computers. It may be used to input any single-digit number (from zero tlırough nine), perhaps after a menl has been printed.

This subroutine has some advantages compared to an INPUT instruction. With this subroutine, the user presses only one key per character (without pressing ENTER). Also, if the user does not wish to respond to the prompt, the EREAK key may be used to interrupt the progran.

10 RER INPUT SUBROUTIITE.
11 IF INKEY\$く>"" THEA GOTO 11
12 PRINT AT 21,1;"?
13 LET A $\$=$ INKEY $\$$
14 IF AS="" THEN COTO 13
15 PRINT AT 21,1 ;A\$
16 IF AS<"O" OR AS>"9" THEN GOTO 11
17 LET I=VAL AS
19 RETURN
Line 11 makes the progran wait, if necessary, until the system is ready to receive a new character from the keyboard. Line 12 prints a question mark near the lower left corner of the screen. It also erases the next five spaces, to finish deleting the nrevious value (even if it was a shifted command word). In line 12, I really use an inverted question mark -- but this printer has no inverse characters.

The user presses one key (without pressing ENTER). Line 13 gets this character and stores it in AS. Line 14 makes the promran wait until the user has pressed a key. Line 15 prints the character, and line 16 tests it. Rejected characters are erased and isnored, instead of interrupting the program with error code "(").

Line 17 converts the character to a numeric value. Some programs may not need this line.

This routine was derived from a tylewriter routine in the Timex User Danual. Many variations are possible. The location of the "cursor" (the question mark) could be roved by modifying the " 21,1 " in lines 12 and 15. Line 16 could be modified to arree with a different menu, provided each choice is represented by a single character. The character need not be numeric.

This routine is not designed for entering multiple-character values. It is usually best to use an INPUT instruction for such values. However, it would be possible to write a routine which would accept multiple-character values keyed without ENTER, provided the count of characters for that value is constant.

The first word on each line is a single-key instruction. In lines 11 , 14, and 16, "COTO" is a single-key command word, and "TliER" and "OR"
are shifted single-key iters. In line 11, the $\langle>$ must be oftained by pressing shifted T. In line 12, I obtain an inverse question mark by pressing, shifted 9 (craphics) to get the inverse C cursor, pressing the normal question narl. (shifted C), and pressing the shifted 9 again to exit CRAPHICS mode. In lines 11, 13, 15, and 17, to oltain "INKEY\$", "AT", and "VAL", press Flinction (shifted ENTER) to get the inverse F cursor first, and then press the single-key "word". Line 16 will occupy 2 lines on your screen; that's normal. (Everything in this paragraph applies to TIFFX BASIC only).

To use the subroutine, a GOSUB instruction is required. COSUB 10 will work on my conputer, but I use COSUB 11 for efficiency.

If there are any questions about this subroutine, please contact me at Soft Answer, phone (301) 474-7922.


```
1)MOSt joystick connector cables
have only E wires, iust those
needed to altou the reading of
UF to 5 switches. If you want
more than to just determine if
a suitch is closed, find a cable
with all g}conductors present
    (Philmore CEq|ot mark eieco in Beltruille)
a)Not a!l ב0EB: have pin g at
grounid; mine does not, Eo I add-
Ed a jumper from the dock con-
nertar ground to the right side
port connector:
BData rates are rather low if
the port is controlled by a
BASIC program:probably less than
70 baud.
4)The part is set for input at
power up. To suitich to output.
Execute SOUND 7,64. The data
is output by SOUND 14.data.
Ta suitch baek to infut mode
ExECute BOUND 7,0. To fead djta
USE STICN, IThE BRSIC EOmmandE
IN and DuT cari also be usedithis
involues more statements and is
slower: The vialue of the data
bute of course depends on whith
pins you mant to g0 high or low.
E.G. Einl is Eit O;if onlyPin
1 is to te high then "data"=1.
51At pouer-uF, E!b bits are set,
E.g. B LED connected from Fin}
togroumd ui|! be lii. The STIEK
funEtign uilicreturn 0. Now if
you switch to the output mode
and urite a D, alt bits are re-
EEt,i=E: the LED goes out.
E) Any data uritten to the port
is butched. If you later suitth
to the input mode and read some
ifput data,itomay feileet uhst
youpreviausiu urote. For Ex-
#mb s, ures then Tead the
Fortuth BTIGk分heresult i S
4. This indicates that sit
# toll 三et arouthe other bits
```



```
thinks onty pin 1 (bit D) is
not grounded.
                        M.S Movis
```


The future is working at General Electric

I keep running total accounts SAVEd on wis TS 1000. (Stock portfolio bal. andes, fitness workouts, checkbook balances, etc) I hate to SAVE twice. If I save but once, every other day, I are only out one day if I goof. But, where is that last day? Pencil and paper I don't use. That's a computer (even TS 1000) for? I put two SAVES on one side of tape, and alternate between the two. To remember, I tape a strip of firm paper to label part of the cassette from side to side. Then I loop another strip around that, fold flat and tape the end. Voila! Slide it from side to side to indicate where the last GiVE is (was?) Good for the absentminded. Now all you have to do is remember to rewind to the beginning of the last S_{a} VE so you start in the right place. I haven't found anything to help ne with that. STEN VINCE

FOR PERSONAL COMPUTER USERS

How To Send Your Resume via your personal computer.

First- Enter your resume onto your disk (it should be in ASCII). There should be no special characters in the resume and each line should have a carriage return. Your resume should be no longer than 2 pages (100 lines) and should include the positions) you are applying for and the best times to contact you.
Second- Dial our number:
300 Baud (301) 340-4800 1200 Baud (301) 340-5096
Third- Type several letter H's.
Fourth- Enter the user code of GGV44101,GE and press "RETURN" on your PC.

FADIG DATE UTE FET Krz

HICKMAME：EILL FEE：4E
TRANEMITTER DRAKE E－NT－KTAL
MOE： $\mathrm{A}-1$
fCUE DUTPUT： 0 WATTE
EEGEIUEP：MEATU HR－IE日Q
FNTENNA：Mor－6ann $00-10 \mathrm{M}$ Ehunt－ Ed dipole，40 PEEt up：
（ PBE 日SL

TE：Froduted －4

＊this may be hard to read because the original was blue－bad news！

 ＊＂Ham QSL＂ betrill Hare F Frnold，Mas＝1012

C事＝Call sign
m＝month \quad d＝date，y＝year
$t=t i m e$（GMT）
r＝signal readability，
strength and tonetsge max．$\quad i=f r e q u e n c y$ in kilotert

z

70 REM w＝uatts output
E00 INPUT＂Uhat is their call？：
C\＃：INPUT＂Hhat is the number of the month？：＂；m：INFUT＂Uhat i ＂today s date？：＂id
210 INPUT What is the year？： HAPUTPUT＂Uhat time is is their RT？＂： NFUT what frequency are you us ng ：：P INFUT＂Uhat is your pou
 1000 CLS PRINT AT DO；NIOKNOM ENT EILL＂AT ORENSMGEE 4E＂MFE E－NT－XTAL＂：PRINT ：PRINT QUER OUTPUT：＂WH：＂WATTS＂：PRIN 1ESQ＂：PRINT PRER＂HERTH HR： Mor－Gain $80-10 \mathrm{~m}$ shunt－ ed dipole， 40 feet up．

1060 INPUT＂QSL RECEIUED？ Y or N ：＂：白事 1000 PLOT E，73：DRAU 10，D：DFRH SUE 2400
1200 FRINT AT 16,$0 ;$＂qE 1 Produced
 E．
1600 COPY
AEOU INPUT ：DO YOU UISH TO HRKE ＂THEN 60° TO 100 1945 LFRINT
1950 ETOP

E000 CLS
 4日：DRAU 5，DRAM－ $4,-50$ DAF 24，－50：DRHU－50：DRAH－E0． 40 EOTHD D． 40 ：DPAU－5．0
E010 PLOT 50．75：DRAU O．EO：DFRH 10，40：DRAU 10，D：DRFH 10， 40 ： DFAO D． $60:$ DRHL $-5,0$ DFAL 0,55 DRAL－2D． 0 ：DRAU O． $55:$ DRAH－ 5．D．PLOT 55，135：DFAH EO．D：DEA －10， 35 DRAL－10－35
 0
 AU－20．0
EDS 4 REM
EOED FLOT $210,75:$ DRFH D． 100 ：OF

DRAU－ 00, EO：DRFU 0 － 00 ：DRFU －5． 0
2070 PLOT 0．18：DRAH 255：0：DRHU
 DFAU－4D：DE DRFA D，15：DFAH D． －15：DFAH 7 E，D：DRAM 0，15：DRFU 2100 FRINT HT are，JT：＂；AT is， $123=$ Eam R, H E Annapolis Elud，i，AT 16 ，＂Arno －d Maryland E101E＂；AT 18 ，＂RAD

E110 GOPY：LPRINT


```
EBE ROLTNT RETURN, 1;"X";AT 13,3:"
```


Thoughts We Have All Had and Never Expressed

Harch 5, 1985
Dear Mark Fisher:
Wy first problem is that I seen to be several laps behind in my knowledge of tice IS problem. Since 20:68, ipectram and clave come upon the scene, I have been unable to come to meeting because of conflicting family sckedules on Saturdays (and besines, I'm way over here in Virginia).

Winile magarines seem to be aole to label their differing articles on the 2068, Spectruri, $\overline{\text { I }}, 1000$, and 1500 separately and keep them separated, it appears that CTS Norslettor Rinds this immossible. inat a pity. We retarded citizens have trowble knowing exactly which instruecions we must follow. I use a TS 1000, and no other, so I have no need to read and understand the material on other machines that is not pertinent. I hadthought I muidex cuuld devine between the TS 1000 and 1500 ard others by ti: upper and lower case letters aprearing in the prograns, but now and then we fird that someone has conied orograms on other "word processords" (I think) and failed to honor the difference:

Could you pbblish a definitive article about the differences between the varous models and whit can be transferred from one to another? That would relp a lot. I can't contribute the article as I don't know, and it appears that thoser who do know aren't contricuting. Needed is help.

I use my TS 1000 a lot. I have developed a library of financial calcilation formulae which now are programs, and thew help a lot. I also maintain day-by-day track of a stock fortfolio through a program I have written, debueged and use al thoush it still needs work and probajly always shall. I doubt that my use and need will expand beyond the above. Sut, I am symp? thetic io others' problems in deriving other uses from the little ronster, and I ami interested in othersb interests and needs, so I cherish the ChTS NESSLETTE?, and would like to coine to meetings.

Well, best regards, and best of luck.

> Yours,
> Stew Vance

P.S. Examples;

CATS NETSETETE March 1985

page 11, "from T/S Users Group, ABILFiE TEX. Paul Maserang.
What machine is he talking of? Obviously not 1000; but what? Also, that line "when saving a program to auto RNW by using IINE, if y our.first line is a REFIN etc., is gob knowlecge.
page 12: "2053 Printing Calcul tor" line 2: it should work on the Timex 1000 if line 100 is changed." (Changed to what?) I chailenge this to work with any unstated change on a rimex 1000. Example line 65 or any otrer line wiich continues on without a ner line after a colon. And, where did that
continued from p. 13
vertical arrow cone from in bine 250? line 940? Rnough! Schrack, a volunteer, and not to be scorned, can't see beyond the end of his om nose. Ard, the nevsletter editor is perhaps required to be an editor, not a reproducer. That's ppinter's job.
page 14: Ward Seguin's article on Foid DATA Statements. What mackine? I thought it was a continuation of the PEDDATA in foregoing C. TS Newsletters, axt and for TS 1000, but hat's that End(Upper and lower case) entry on line 70 doing? Friter or editor? Someon's at Iault.
page 15: Ward Seguin's Loan Arortization. That machine? Sure a Iot of unfamiliar items for à TS 1000 user.
page 14: "Your?" commentary on Read/Data \& ?ef FiN: \%hile this is aàdressed to ones who use TS 1000, they have no references to what you are talking about, as PEAD/DEA are not TS 1000 talk, nor is JEF FN.

MIRACLE TIME!

Fat Characters for your printer and your screen.
I'm happy to announce that that this thing WORKS!

The thing I'm referring to is the accompanying listing, which allows MSCRIPT to work with the FAT CHARACTER subroutine that was first developed by the Triangle Sinclair User's Group.

MSCRIPT uses the 64 column mode of the 2068. Normally, this means that each bit is only half as wide as normal, putting the character at the limit of resolution for the average monitor (and well beyond the limit for broadcast TV.

The following listing creates a new character file, with all vertical lines two bits wide. This can be used with either the 2040 printer and your normal programs, or MSCRIPT.

To use the routine to get enhanced printouts from your 2040 printer, type in lines 1 to 8, SAVE it,then MERGE with the program you'd like to enhance.

To use this with MSCRIPT, type in the full listing, SAVE it, then load MSCRIPT CODE. Now, for the first time, GOTO 1. The program will stall while trying to LOAD MSCRIPT again. BREAK, and GOTO 11; then press "b" and create a working hybrid word processor.

In use, the fatter letters are much easier to read. Only lower case " m " and " w " are dificult, and even they are better than they were. Go for it!

Great thanks are due to the person that worked this out. Unfortunately, the author was too modest to put his/her name in the first REM statement, and the cover letter was lost. Would the real author please stand up?

1 REM MSEFIPT LOADER UITH FAT CHARACTERS

3 CLEAR E473E
 $0,063,042,054,292,036,126,167,06$ 1, 102, 018, 235,019, 043,032, 245,01
 N: POKE I, N: NEXT I

$$
5 \text { RANDOHIZE USR } 64737
$$

9 CLS: INK E PRPER O: FLASH
PT: PORENT PT IV SH: "OADINE MSERI
10 LOAD 2 CODE
11 CLS: PRINT AT 20.0;"PRESS "b" FOR BACK LIF": "ENTER TO START HSERIPT"
Iᄅ IF INKEY事 $=: \cdot$ THEN GO TO 12

THEN GO TO 15
14 GOTO 20
IS CLS: FRINT RT 15 O "MAKING
BACK UP": BAUE "HSCRIPT" LINE I PRUSE 102: BAUE "HSCRIPT"CDDE $36864,7931:$ CLS: PRINT AT 15, "REHIND AND PLAY TO UERIFY": UER IFY ": UERIFY "CODE: PRINT "U ERIFY OK ": FPUSE $200:$ GO TO 11 20 DELETE 1,19 21 CLEAR 647E7: CLS : RANDOMIZ
E USR 36864

AUOIDING THE FUNCTION
 DISPATCHER

The edsers function dispatcher is intended to give application programmers access to a number of Rom routines. These routines can be more easiby accessed by a direct call. The addresses of all service routines can be found in fppendix h of the 2 ges Technica! Manual;e.g. serwice routine 2 has the name PARP. which according to the Appendix is at 03F3 (hexi.

REPLY to STEW

You're right on target with a lot of what you say, Stew. I think your thoughts are shared by a number of other members. I applaut you for having the nerve to come out and name the troubles you're having.

1000 vs 2068 vs Spectrum, etc.

You are right that the CATS newsletter often fails to clearly describe the equipment used to develop the listings. It can be quite hard to tell them apart - and it dosen't need a ward processor to make it so; just "CAPS LOCK" on the 2068. In my defense, I would say that you should consider whether you, in fact, have "no need to read and understand material on other machines that is not pertinent." You may find that your flexibility and control of your $!000$ will grow by learning something of the quirks of those other machines. In fact, the Sinclain family are quite similar - there are just a few extra things to understand, coming from the 1000. Translating from other machines can be harder, especially when string handling (Sinclairese is much easier to use). But hard or easy, learning to adapt programs written from other machines can do wonders in expanding your horizons.

You listed some specific questions at the end of your letter; I've got some specific answers, and then I'll follow with some generai principals.

1. page 11; BEEP isn't a working word for the 1000 just look in the manual's index. There isn't any "specia! knowledge" that can evoke it. Seeing the word BEEP should be enough to drop the rest of the item.
2. page 12; The printing caiculator piece was written for the 2068; translating it to the 1000 involves inserting extra lines for each colon, and changing the PAUSE statements from PAUSE to PAUSE 4E4.Translation can be a valuable skill. The knowledge you'll need will be useful when dealing with programs from a variety of sources.
3. \& 5., page 14; Ward's article covered general qualities of the READ/DATA command. While the 1000 doesn't have those keywords, they can be simulated, as discussed in my following article, Ward's use of trailer data works with my routine as well. My READ/DATA article was an abridged recap of an earlier article - I can arrange for a copy of the original, if you like. If you had punched it in, I think that you would have understood what was meant. 4. page 15; that's right, it's for the 2868. But 99\% of it can be directly typed into the 1000, and the rest is easily adapted. See below.

Signals that it ain't for the 1000 (and tips for translation)

If you see any of the following, you can be sure that the listing wasn't from a 1000. The suggested translations aren't the last word - see item 6.
1.Multi-statement lines, Cure by writing multiple lines. If there is an IF in the line, all statements after it will be ignored if it is false. Cure by using a succession of IF lines, or by jumping to a subroutine.
2. PAUSE 0. Use PAUSE 4E4. PLOT is another case of identical commands, with different parameters: the 2068's screen is 254×175, while the 1000 's is 44×64.
3.Lower case. Not infallible - see line 9900 of this month's "AMORTIZE". CAPS LOCK on the 2068 can fool you also.
4. Apostrophes. The 'is used in the 2068 to drop one line. In last month's PRINTING CALCULATOR, multiple PRINTs were used. Use PRINT on a seperate line, or ",".
5. Funny operators: \uparrow, READ/DATA, DEF FN, VAL*, STICK, BEEP, DRAW, etc. \uparrow is **. Sometimes the others can be imitated by subroutines. READ/DATA can be used on the 1000 as I discussed last month. VAL can't, but it is rarely used. STICK can be replaced by INKE Y\$, BEEP, SOUND, etc. can. be ignored. CIRCLE and DRAW can be replaced by subroutines (I've got a good machine code DRAW, if anybody wants it).
6. There are probably more, but I can't think of them right now. If you readers have any further tricks of translation, send them in - they'll be printed.

AMORTIZE for the 1000

You may find the following program to be of help as an example of translation from the 2068 to the 1000. It is a rework of Ward's Loan Amortization program in last month's issue. Since the 2068 transcends SCROLLs, I had to put them back in the program. The other additions were:

1. Schedule starts on any given month. New variable ST. (stolen from Albert Strauss).
2. Yearly breakouts of interest and principal. New variables YI, YP, and YT.
3. Echo to printer (turn printer off to disable, or delete lines). LPRINT lines are set up for an 80 column printer - if you've got a 2040 , make
```
    10 REM *** AMORTIZATION ***
        EQUAL PAYMENTS
    20 REM BY W SEGUIN, 1985 - TRA
NSLATED TO T/S1000 BY M FISHER
    30 PRINT "AMORTIZATION TABLE"
    40 LPRINT "AMORTIZATION TABLE"
    50 PRINT,"AMOUNT BORROLED ="
;
    60 LPRINT "AMOUNT EORROWED =";
    70 INPUT P
    80 PRINT P
    90 LPRINT P
    100 PRINT ,"NO. OF YEARS TO PA
Y =';
    110 LPRINT "NO. OF YEARS TO PAY
    **;
    120 INPUT Y
    130 PRINT Y
    149 LPRINT Y
    150 PRINT ,"STARTING AT MONTH
NO. (1 TO 12) ";
    160 LPRINT "STARTING AT MONTH N
    0. (1 TO 12) ";
    170 INPUT ST
    180 PRINT ST
    196 LPRINT ST
    200 REM COMPUTE NO. OF MONTHS
    210 LET M=12*Y
    220 PRINT ,"INTREST/YR (6 1/2
    PCT=6.5)=";
    230 LPRINT "INTREST/YR (6 1/2 P
    CT=6.5)=";
    240 INPUT I
    250 PRINT I
    260 LPRINT I
    2 7 0 ~ R E M ~ M O N T H L Y ~ I N T ~
    280 LET R=1/(100*12)
    290 REM EQUAL MONTHLY PAYMENTS
    300 LET M1= (1+R)**M
    310 LET E={P*R*M1)/((1+R)**M-1)
    320 LET E=(INT (E*100+.5))/100
    330 REM CALC, THEN PRINT
    340 LET TI=0
    350 LET TP=TI
    360 LET SP=TI
    370 LET YI=TI
    380 LET YP=TI
    390 LET YT=TI
    400 PRINT ,:,
    410 PRINT "MONTHLY PAYMENT =";E
    420 LPRINT "MONTHLY PAYMENT =";
    E
    4 3 0 ~ S C R D L : ~
    440 PRINT "MO PRINCIPAL INTERE
    S PRINCIPL"
```

450 LPRINT "PAY MO FRINCIPAL I NTEREST PRINCIPL"
460 SCROLL
470 PRINT "NO OWED PAYMN
T PAYMT"
480 LFRINT "NO NO OWED
PAYMNT FAYMT"
490 REM THEN PRINT DASHES
500 SCROLL
\qquad

530 FOR J=1 TOM
540 LET II=P*R
550 LET P1=E-i:
560 IF J=M THEN LET P1=F
570 IF $I=M$ THEN LET $11=E-P 1$
580 LET II=(INT 〈I! *100+.5〉) 10
0
590 LET P1=(INT $(P 1 * 100+.5)\rangle / 19$
0
600 SCROLL
610 LFRINT J;TAB 4:ST:TAE 9:P:T
AB 20;I1:TAB 29;P1
620 PRINT ST:TAE 5:P:TAB 16:11;
TAB 25;P1
630 REM COMPUTING TOTALE
640 LET TI=TI+I1
650 LET YI=YI+I 1
660 LET TP=TP+P1+I1
670 LET YT=YT+P1+I1
680 LET $\mathrm{SP}=\mathrm{SP}+\mathrm{P} 1$
690 LET YP=YP+F!
700 LET $P=(I N T(P-P 1) * 190+.5)$
100
710 IF ST=12 THEN GOSUB 910
726 REM YEAR TOTALS
730 LET ST=ST+1
740 IF ST $=13$ THEN LET ST=!
750 NEXT ?
760 GOSUB 916
770 REM COMPUTING SUMMARY TOTAL s

780 LET TI=(INT (T1*109+.5))/10 0
790 LET SP=(INT $(S P * 100+.5)) / 10$ a
800 LET TP=\{INT (TP*100+.5))/18 8

810 SCROLL
820 PRINT "TOTAL INTEREST $=$ "; TI
830 LPRINT "TOTAL INTEREST $=" ;$ I

840 SCROLL
850 PRINT "TOTAL PRINCIPAL="; SP
B60 LPRINT "TOTAL PRINCIFAL $=$ ";

```
S
    8 7 0 ~ S C R O L L ~
    880 PRINT "TOTAL PAYMENTS =";TP
    890 LPRINT "TOTAL FAYMENTS =";T
P
    900 STOP
    910 REM **** YEARLY SUBS ****
    920 SCROLL
    930 PRINT "YEAR NO, ";INT (J/12
)+1;" TOTALS:"
    940 LPRINT "YEAR NO. " EINT (J/1
2)+1;" TOTALS:"
    950 SCROLL
    9 6 0 ~ F R I N T ~ " ~ T O T A L ~ I N T E R E S T ~
        FRINCIPL"
    970 LPRINT " TOTAL INTERES
T PRINCIPL*
    960 SCROLL
    9 9 0 ~ P R I N T ~ " ~ P A I D ~ P A Y M N T :
        PAYMT"
10日E LPRINT " PAID PAYMNT
                FAYMT"
1010 SCROLL
1020 LPRINT TAB 3;YT;TAB 14;YI;T
AS 22;YF
10З0 FRINT TAB 3;YT;TAB 14;YI;TA
E 22;YP
1040 LET YI=0
1050 LET YP=YI
10.50 LET YT=YI
1070 SCROLI
1080 PRINT "------------------------
------------n
1090 SCROL
1160 PRINT "MO BALANCE INT. F
Y PRINC."
1:10 LPRINT "NO MO BALANCE I
NT. PY PRINC."
1120 SCROLL
1130 PRINT n-----------------------
------------"
1140 LPRINT "
--------------*
1:50 RETURN
9000 LET X=16509
9010 LET N=10
9020 IF PEEK X*256+PEEK ( }X+1)>=
000 THEN STOP
9030 POKE X,INT (N/256)
9040 POKE }X+1,N-(PEEK X*256
9050 LET }X=X+\mathrm{ PEEK ( }X+2)+\mathrm{ PEEK ( }X
3)+4
9060 LET N=N+10
9070 GOTO 9020
9900 SAVE "AMORTIZe"
99:0 RUN
```

each LPRINT identical to the PRINT line near it．

To simplify the typing，DEF FN could be added by adding a line：

5 LET $F={ }^{\circ}$ INT（ $\mathrm{X} * 100+.5$ ） 1100^{n} and replacing each incidence of the string with two lines：ex：

```
575 LET X=I 1
580 LET I I=UAL Fक
```

Lines 9000 to 9070 are a quick re－numbering utility that I put in to clean up my print out［see Hacking in BASIC，this issue］．

Mark Fisher

DOUBLE PRECISION

This code will do＂double precision＂－that is it will take two 8－digit numbers and give a 15－digit number．It accomplishes this by breaking each s－digit number into two 4－digit numbers and then multiplying them．The products are then suitably re－ combined．

5 REM DOUBLE PRECISION
10 PRINT＂Give first number i\＆ ＝8 digits＂：INPUT a：PRINT：a： RANT

20 PRINT＂Give second number i
$\langle=8$ digits＂：INPUT b：PRINT b：
PRINT
22 LET ah＝INT（a／1044）：LET al
$=$ INT（a－1044 baht．1）
24 LET bh＝INT（b／1044）：LET \＆！
$=I N T \quad(b-10+4 \div b h+1)$
30 LET chh＝ah하
40 LET chll＝ahabl
50 LET Gll＝alxbl
60 LET chhh＝INT ichh／10れ4：LE
T chit＝INT（ 5 （hh－10t4 2 Chhht．i） 70 LET Ch（hI＝INT $($ ch $11 / 1044):$
LET ChIUI＝INT IChli－1044\％Chlhit．
1）
72 LET chlhe＝INT ichie／1044）：
1）chlle＝INT（chle－10t4tchthet．
80 LET $C!1 h=I N T$（Cl！ $10+4$ ：LE
T C！ll＝INT（cll－10t4mcilh＋．I）
90 LET C1＝104 4 whhhtchhtitchihi
＋chine
100 LET ce＝10t4＊（chllitchlletct
（h）+ C ll
102 IF $62<10+8$ THEN GO TO 118
104 LET C2＝10t4＊（（ch $11-5002)+1$
Ch $1(2-5000)+6(1 \mathrm{~h})+6(11$
105 LET $1=1=1+1$ ．

112 FOR $x=1$ TO 7
114 IF（ce $10 \uparrow \times 1$ THEN GO TO 12 E
115 NEXT X
118 PRINT Ci； 5
120 STOP
122 LET $\omega^{*}=z=$（ x TO ）
124 PRINT CI； 1 中；

HACKINGin BASIC

RENUMBERING INCLUDING GOTO and GOSUB

There have been several examples of renumbering routines that have run in the CATS newsletter over the years. They have all shared a common failing - they couldn't alter the GOTOs and GOSUBs. This is a problem in BASIC, because all program jumps (GOTO \& GOSUB) are absolute jumps. The program jumps to a specific line number, not a specific number of lines foreward. When a program is renumbered, a given number may refer to a very different line in the program.

In thinking about the problem, it seemed that the only way to change the GOTOs was via machine code. Programs such as this are available, called toolkits. But even the best of the toolkit programs can't handle renumbering computed GOSUBS, such as GOSUB 500*X+1000.

Then, a couple of weeks ago, I realized that there is a way to change ALL GOTOs and GOSUBs from jumps, to relative jumps. And it's all in BASIC, on either the 1000 or the 2068! With relative jumps, a block of instructions can be changed from lines 100-300 to 400-600, while a GOTO that jumps ahead 3 lines (or 30) continues to work.

For the 1000: start your program with
1 LET Fक="PEEK 16391+256* FEEK 16392" After running this line, PRINT UAL F\$ will return the current line number! This takes advantage of the system variable PPC, that holds the line number being executed. An absolute jump to two lines ahead might be written
20 GOTO 40
(assuming you are using intervals of ten for each line). To change this to a relative jump to two lines ahead, substitute:
20 GOTO VAL F\$+20
As written, it will GOTO line 40. If it is renumbered to line 80, it will GOTO line 100.

Computed GOTOs are also possible, as in GOSUB VAL F $\$ * 500+1000$. The only time this will fail, is if you change the numbering interval, or add a line of code within the numbers skipped by the GOTO. Obviously, this is more likely for large jumps than small - but it's the small jumps that often just can't be avoided.

For the 2068: the 2068 has a real DEF FN command, and this is a perfect place to use it:
1 DEF FN f()=PEEK 23621+256*PEEK 23622 followed by
20 GOTO FN f() 20
Try this out for yourself - a renumbering program is hidden in lines 9000 to 9070 of the AMORTIZER program in this issue.
absolute

UNCLASSIFIED

FOR SALE: T/S 2068 \& Westridge MODEM.
Call Fichard, Roland, or Constance Roseen
703-527-8467 or 703-533-3590
FOR SALE: 2 T/S 2068's, 2 cassette recorders, 22040 printers, + software. No reasonable offer refused. Mark [no relation]; 548-7615 (H) 344-5819 (W)

FREE: Excellent catalog. Write Sunset Electronics, 2254 Taraval St., San Fransisec CA 94116

FOR SALE: Typewriters - IBM Selectric ! $\$ 250$ \& IBM Model C $\$ 75.90$. No reasonable offer refused. 301-559-4281.

MRI books offers a catalog of 1500 computer books (including Mastering Machine Code), free. MRI Books, Alexandria VA, 549-553?

For parts for all those hardware projects, try: Revacto or Heathikt in Rockville, Electronics Plus in College Park, or Mark [no relation] Electronits in Beltsvinle.

Thoughts on MSCRIPT

I've used MSCRIPT to write several of the articles in this issue. There has been a lot of learning that I had to do. In general, I agree with the review we ran last month. There have been some surprises.

1. It is more easily used that I feared. I've diddled with WORDSTAR, and have yet to feel comfortable with it. MSCRIPT is all right.
2. As it comes, it is hard to read, even on a monitor. Fat Characters totally fixes this.
3. Its tape SAVEs and LOADs are its biggest weakness. It dosen't use the standard T/S routines, and will not load "". Most importantly, it cannot VERIFY. I've already lost several files due to glitches of some sort, on good tape. (Learning goes on - I just realized that I could use the Append command to verify that a file could be reloaded, without destroying the original.)
4. Its operation is smooth. This is a professionaly done program, and it shows. It is tolerant of variations in commands: $L M=9,1 m=9$, and 1 m 9 all do the same thing. Its HI command (hanging indent) is a treasure. I'm using it now.
5. The manual is easy to read and comprehensive. It does not include a command summary for its numerous commands.
Rating: a slightly tarnished *****,

Capitol Area Timex/Sinclair Users' Group
 P.O.Box 725
 Bladensburg, MD 20710

Name
Address \qquad
ZIP \qquad
Pione
Home
Office \qquad
".embersinins - 15.00 (family/individual);make checks parable tc C.A.T.S.
If family membership, please list family members particinating:

Occupation \qquad
Fam Railo call sign \qquad
Equipment
2×80
IA 80

RAif size
full keyioard
Printer
type
other interiace \qquad
special interesi use for computer: ie, games, ham radio interface; business, other, etc. \qquad

Languages: Basic \qquad Other
Nachine \qquad
No. of years computer experience
diat comittees would you like to serve on?

Comments:

Do not write below:

Dt. Pd. \qquad Amt.
Membership No.
Ca. Ck.

CATS Newsletter
P．O．Box 725
Bladensburg MD 20710

guLk rate
U．8．postace
PAID
Permit Na． 40 MMDALSTOWA．MD．

The next meeting of CATS wil？be held on：
＊＊＊＊＊＊＊＊＊SATURDAY，April 13， 1985 2 $2: 00$ PM
New Carrolton Public Library．
7414 Riverdale Road，New Carrolton，MD
IF YOU ARE NOT A MEMBER OF CATS．THIS IS THE ONLY ISSUE YOU WILL RECIEUE Dues $=\$ 15.00$ per year，per family．

[^0]: F. Lussier MEMBER

